Bioreactor Mass & Energy Balances;
Scaling Strategies & Benefits

Patrick Sagmeister
Christoph Herwig
1. Introduction
   Profile BioVT @ Vienna University of Technology
   Profile Exputec GmbH

2. Basics Mass & Energy Balancing
   Basic principles
   Calculation of rates and yield coefficients
   Compiling balances

3. Advanced Material Balancing Tools
   Test data consistency
   Enhance data quality
   Estimate unknowns

4. Exputec Case Studies
• Method Development
  – Upstream & Downstream Process development
  – Soft-sensors
  – PAT strategies
  – Control strategies
• Systems
  – Microbials, Fungi, Extremophiles, Cell Culture
• Strain Engineering
Exputec GmbH

- Focusing on scalability, efficiency and quality for industrial bioprocesses
- Contract Research
- Consulting
- Algorithms
Mass & Energy Balances

Basics

General material balance
Calculation of volumetric rates
Calculation of specific rates
Calculation of yield coefficients
Compiling balances
Motivation

- **Goals**
  - Bioprocess design, analysis, optimization and control

- **Challenge**
  - Complexity
  - Non-linearity
  - Framework: Time & Cost

→ Elemental and energy balancing is primary tool for bioprocess analysis
Elemental and energy balancing is applied during the whole bioprocess development and product lifecycle.
General material balance

- Principle
  - Conservation of mass, charge, energy
- Basic bioprocess analysis tool
  - Total mass
  - Elements (C, N, O, H, S etc.)
  - Energy (e.g. enthalpies)
Simple example from chemical engineering

- **Simple mass balancing example**
  - 1 inlet stream
  - 3 outlet streams
  - outlet concentrations [%] and inlet stream [g/h] is measured

- Outlet streams (F1, F2, F3) should be calculated
Simple example from chemical engineering

- **Approach**
  - define envelope
  - Set up equations
  - compute unknowns

- **Balances used**
  - Total mass balance, species 1 and species 2 balance

- **Outlet streams can be calculated**

**Equations**

\[
\begin{align*}
x_1 + x_2 + x_3 &= 10 \\
0.04 \times x_1 + 0.54 \times x_2 + 0.26 \times x_3 &= 10 \times 0.2 \\
0.93 \times x_1 + 0.24 \times x_2 + 0.00 \times x_3 &= 10 \times 0.6
\end{align*}
\]

\[
x_1 = 5.8; \ x_2 = 2.4; \ x_3 = 1.7
\]
Mass balancing of bioprocesses
- calculation of volumetric rates, specific rates and yield coefficients
- estimation of unknown non-measured variables
- consistency checking of measurements
What kind of reaction takes place?

Stoichiometry

- Very complex!
- Alternative: Black box approach
  - Cell considered as catalyst
- Concept of C-molarity
  - Every species divided through the number of C-atoms

\[ \text{INPUT} \quad \qut...
Volumetric rates

- **Volumetric rates** [mol/(L*h)]
  - How much of species \( i \) is processed by liter and hour
  - Examples: OUR, CER, MER, rx

- **General approach**
  - Take general material balance
  - Solve for rate (\( r \))

Example: Batch Process, Biomass

\[
\dot{V}_{in} * c_{in} - \dot{V}_{out} * c_{out} + V_R * r_i = V_R * \frac{\partial c_i}{\partial t} + c_i * \frac{\partial V_R}{\partial t}
\]
Volumetric rates

- **Volumetric rates** [mol/(L*h)]
  - How much of species i is processed by liter and hour
  - Examples: OUR, OTR, MER

- **General approach**
  - Take general material balance
  - Solve for rate (r)

Example: Batch Process, Biomass

\[
\dot{V}_{in} \cdot c_{in} - \dot{V}_{out} \cdot c_{out} + V_{R} \cdot r_{i} = V_{R} \cdot \frac{\partial c_{i}}{\partial t} + c_{i} \cdot \frac{\partial V_{R}}{\partial t}
\]

\[
dV/dt = 0
\]

\[
\frac{dx}{dt} = rX
\]
Specific Rates

- **Calculation**
  - Divide volumetric rates through amount of catalyst (biomass)

- **Specific rates [g/cell/h]**
  - How much of species is converted by catalyst (biomass) and hour
  - Examples: $\mu$, $qs$, $qM$
  - Link to physiology!

\[
\frac{r_i}{x} = q_i
\]
Yield Coefficients

- **Calculation**
  - Divide rate/ rate or specific rate/ specific rate

- **Yield coefficients [g/g]**
  - Examples: Biomass yield coefficient (Yx/s), Respiratory quotient (RQ)
  - Physiological interpretation!

\[ Y_{i/j} = \frac{r_i}{r_j} = \frac{q_i}{q_j} \]
Volumetric rates vs. specific rates and yield coefficients

- **Basic bioprocess descriptors**
  - Volumetric rates
    - carry information on total metabolic activity
  - Specific rates
    - carry information on cell physiology
  - Yield coefficients
    - carry information on cellular flux distributions

→ Calculate for every process

\[ Yx/s = rx/rs \]
Compiling balances - Start to trust your rates

- **Elemental Balances**
  - C-Balance
  - N-Balance
  - Degree of Reduction balance

- **Energy Balances**
  - Enthalpies of species

> Can I trust my data? Stoichiometry right?
Practice of calculating time-resolved rates, yield coefficients & balances

- Suggested procedure
  - 1) Align Data
  - 2) Calculate volumetric rates
    \[
    \dot{V}_{in} \cdot c_{in} - \dot{V}_{out} \cdot c_{out} + V_R \cdot r_i = V_R \cdot \frac{\partial c_i}{\partial t} + c_i \cdot \frac{\partial V_R}{\partial t}
    \]
  - 3) Calculate specific rates, yields and compile balances
    \[
    \frac{r_i}{x} = q_i \quad Y_{i/j} = \frac{r_i}{r_j} = \frac{q_i}{q_j}
    \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>90.6</td>
<td>95.0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>14.1</td>
<td>90.4</td>
<td>95.8</td>
<td>15.1</td>
<td>4.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>90.6</td>
<td>95.0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>14.1</td>
<td>90.4</td>
<td>95.8</td>
<td>15.1</td>
<td>4.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Constants

- \( V_m = 22.4 \)
- \( \text{DoR}_S = 4 \)
- \( \text{DoR}_{O2} = -4 \)

Rates/ Yields/Balances

<table>
<thead>
<tr>
<th>Time [h]</th>
<th>rs [Cmol/L/h]]</th>
<th>qs [Cmol/(gh)]</th>
<th>Carbon balance</th>
<th>DoR balance [g/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.651</td>
<td>0.005</td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>14.1</td>
<td>0.632</td>
<td>0.0051</td>
<td>1.05</td>
<td>1.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example: timely resolved rates for an *E. coli* fermentation

Aquired raw data

Fermentation parameters: induction temperature: 20°C, k=0 (linear feed).

**Figure 85:** Fermentation at 20°C applying a linear feed (k=0). Left: intracellular protein concentrations (orange), intracellular activity (purple) and biomass concentrations (green). Right: extracellular protein- (orange) and biomass (green) concentrations. X-axis: induction time.

**Figure 86:** Fermentation at 20°C applying a linear feed (k=0). Left: off-gas measurements of CO₂ (green), oxygen (blue) as well as gas inlet flows of oxygen (purple) and air (orange). Right: signals recorded from the feed balance (orange) and base balance (purple). Time point of induction is indicated by a vertical bar. X-axis: process time.
Example: timely resolved rates for an *E. coli* fermentation

**Volumetric rates, specific rates and balances**

Fermentation parameters: induction temperature: 20°C, k=0 (linear feed).

**Figure S7**: Fermentation at 20°C applying a linear feed (k=0). Left: volumetric growth rate $\mu$ (blue), volumetric substrate uptake rate $r_S$ (red), protein release rate $r_p$ (purple) and volumetric cell lysis rate (red). Right: specific growth rate $\mu$ (blue), specific substrate uptake rate $q_S$ (orange), specific protein release rate $q_{Pr}$ (purple) and specific cell lysis rate $q_{Cell}$ (red). X-axis: induction time.

**Figure S8**: Fermentation at 20°C applying a linear feed (k=0). Left: biomass (blue), CO$_2$ (orange), extracellular protein (green) as well as ammonia (purple) yield. Right: carbon (blue), degree of reduction (orange) as well as nitrogen (green) balance.
Remark 1) Gas flow quantification via MFCs

- **MFCs**
  - **Mass flow controller**
    - Calibrated for defined gases
    - Not calibrated for complex mixtures of gases

- **Outflow**
  - $F_{in} = F_{out}$? No!
    - Reactions $rO_2$, $rCO_2$
    - $H_2O$ vapour

\[ q = F \times C_p \times \Delta T \]
Remark 2) Accumulation of gaseous species

Accumulation term

- Neglectable?
  - Gas holdup
  - Temperature change?
  - pH change?

Corrections

- T-dependency
  - Henry’s Law: $k_{Hf}(T)$

- Total carbonate
  - Correct using carbonate mass balance and acid equilibrium
Remark 3) Scaling Issues

- Reactor In-homogeinities
  - Organism can produce overflow metabolites in compartment 1, overflow metabolites are consumed in compartment 2
  - → Yield coefficients change as a function of scale
Summary Basics Material Balancing

- General Material Balance
- Stoichiometry
- Volumetric rates
- Specific rates
- Yield Coefficients
- Balances

\[
\dot{V}_{in} \cdot c_{in} - \dot{V}_{out} \cdot c_{out} + V_R \cdot r_i = V_R \cdot \frac{\partial c_i}{\partial t} + c_i \cdot \frac{\partial V_R}{\partial t}
\]

\[
CH_mO_i + b \cdot NH_3 + c \cdot O_2 = a \cdot CH_pO_nN_q + dCH_rO_sN_t + eH_2O + fCO_2 + \text{energy}
\]

\[
\frac{r_i}{x} = q_i
\]

\[
\frac{Y_{i/j}}{r_j} = \frac{q_i}{q_j}
\]

\[
\frac{rs \cdot 1 + r_{O_2}}{r_{CO_2} \cdot 1 + r_x \cdot 1 + r_p \cdot 1} = 1
\]
Mass & Energy Balances

Advanced tools

Testing for data quality
Enhance data quality
Estimate unknown rates
(1) Rates Calculability/ Balancability/ Redundancy

- **Classification of rates**
  - Calculable
  - Non-calculable
  - Balancable
  - Non-balanceable

- **Redundancy**
  - Two or more of the measured conversion rates are balancable

---

(1) Test for data quality/ reliability

- Can I trust my data?
  - Outliers
  - Sensor drifts
  - Instrument failure

- Material balancing
  - Can error on balances be explained by measurement noise?

→ Compute statistical test value to test for data quality

(2) Enhance data quality

- If no gross errors
  - Use reconciliation to enhance data quality
    - adapt rates so that all balances close simultaneously
    - Noise-eliminated rate
    - Approach: weighted least squares

\[
W_b = W + \delta
\]

(2) Enhance Data Quality in Real-Time

- Data reconciliation
  - can be performed in real-time
  - Elimination of noise
  - No smoothing!
  - Checks for data consistency in real-time

→ Higher signal to noise ratio
→ More information from your data
→ Gain trust in your data through statistical test value (quality criteria for your data)
(3) Estimate unknown reaction rates

- **Estimation**
  - Check Rank (Redundancy)
  - Reconcile measured rates
  - Estimate rates
  - Check estimation quality using statistical test value

- **Reliable estimation of unknown rate**

---

(4) From estimated rate to estimated concentration

- **Soft sensing**
  - Numerical cumulation of estimated rate (e.g. biomass formation rate)
  - Estimation of volume following a mass balancing approach

→ Reliable estimation of unknown process variable

Summary Advanced Tools

- **Trust in data** consistency using a statistical test
- **Less noise** on data through reconciliation
- **Estimate unknown rates**
- **Estimate unknown concentrations**
Mass & Energy Balances

Case studies
Material balancing assisted Multivariate Data Analysis
Platform Control Algorithms
Reconciliation of Gas Rates
(1) Using mass balancing in combination with Multivariate Data Analysis (MVDA)

- MVDA
  - Tool used to analyze large data sets (MLR, PCA, ParaFac, Tucker 2, 3 …)
  - Factors → Responses
  - Which factors to use?
    - Concentrations?
    - Volumetric rates?
    - Specific rates?

→ Run MVDA on specific rates and yields instead of raw data

RAW Data e.g. [CO2]

Information e.g. CER, qCER, μ

(1) Using mass balancing in combination with Multivariate Data Analysis (MVDA)

- **Challenge**
  - Inconsistent data sets
    - Measurements missing
    - Sensor drifts, errors?

- **Solution**
  - 1) Test data consistency, remove data that is not consistent
  - 2) Reconcile measurements
  - 3) Estimate non-measured rates and yields

→ Provision of reconciled specific rates and yield coefficients as input for MVDA
(1) Using mass balancing in combination with Multivariate Data Analysis (MVDA)

- Example recombinant *E. coli* bioprocess
  - Processing of data (concentrations, flows) into specific rates and yield coefficients ($\mu$, $qs$)
  - Principal Component Analysis

$\rightarrow$ Root cause identified, variables impacting on process performance can be interpreted
(2) Development of a platform bioprocess control algorithm

- **Goal:** closed-loop control of the specific growth rate
  - Fed-batch process
  - primary process variable in respect to product formation
  - Two hosts, many strains, many products, many processes
  - Desired: One algorithm that fits them all

→ Develop one platform control algorithm to control the specific growth rate in microbial processes
(2) Development of a platform bioprocess control algorithm

- **Approach**
  - **Toolset**
    - Data Reconciliation, Rate Estimation, Rate Cumulation
    - Data Base for Host stoichiometry
    - On-line detection of physiological state using a statistical test
    - Control Algorithm

→ Advanced balancing tools and on-line statistical decision making for the development of a generic control algorithm
(2) Development of a platform bioprocess control algorithm

- In process performance
  - Implementation: Compiled to C, runs in real time on Lucullus PIMS
    - No strain specific knowledge used
    - Specific growth rate controlled
    - Specific substrate uptake rate of inducing substrate controlled dynamically

→ Robust control of the specific growth rate in recombinant *E. coli* bioprocesses
(3) Estimate methane evolution rate in a methanogenesis process

- **Process**
  - Conversion of H2, CO and CO2 to CH4

- **Goal: Reliable on-line estimation of product formation**
  - Use of MFCs requires Cp correction through measurement (H2, CH4, CO2 (different Cps))
  - On-line estimation of reaction rates and consistency check

→ Estimate product formation rates in real-time
Take home messages Mass & Energy Balancing

- Balancing is key bioprocess analysis tool
  - Volumetric & specific rates, yield coefficients
  - Compiling balances (C, DoR, N, S, etc.)
- Sound balancing is a balancing act
  - Are simplifications justified?
  - Sensor reaction time?
  - Changes in pH, T that effects gas solubility?
- Scaling
  - Yield coefficients can change due to reactor in-homogeneity
Take home messages Advanced tools

- Balancing tools do not stop with compiling balances!
  - Use statistical test to detect sensor drifts, miscalibration and gain trust in your data
  - Use reconciliation and rate estimation to compute unknown fluxes in real time
  - Obtain a statistical test value for your estimation quality in real time!
- Use a powerful toolset of advanced balancing tools for bioprocess design, analysis and control
  - Multivariate Data Analysis
  - Observer (Particle Filter, Kalman etc)
  - Control algorithms
Take home messages Case Studies

- Use a powerful toolset of advanced balancing tools for bioprocess design, analysis and control
  - Multivariate Data Analysis
    - Only use data that is trustworthy
    - Quality criteria for your data
  - Genetic platform control strategies
  - Applicable for white & red biotechnology
EXPUTEC

*Design to Improve*

*Bioprocess solutions*

Patrick Sagmeister/ Christoph Herwig/ Magdalena Kment/ Ulrich Tröller
https://www.facebook.com/BioVTatTUWien

Univ.Prof. Dr. Christoph Herwig
Vienna University of Technology
Institute of Chemical Engineering
Research Division Biochemical Engineering
Gumpendorferstrasse 1a/ 166 - 4
A-1060 Wien
Austria

e-mailto: christoph.herwig@tuwien.ac.at
Tel (Office): +43 1 58801 166400
Tel (Mobile): +43 676 47 37 217
Fax: +43 1 58801 166980
URL: http://institute.tuwien.ac.at/chemical_engineering/bioprocess_engineering/EN/
Contact details: Dipl.-Ing. Patrick Sagmeister

Vienna University of Technology
Institute of Chemical Engineering
Research Division Biochemical Engineering
Gumpendorferstrasse 1a
A-1060 Wien
Austria
Tel (Office): +43 (1) 58801 - 166 482
Tel (Mobile): +43 680 400 500 7
Backup Slides
\[ h = \varepsilon^T \Phi^{-1} \varepsilon \]

\[ \delta = \Psi \varepsilon^T \Phi^{-1} \varepsilon \]

\[ EX = E_m X_m + E_c X_c = 0 \]

\[ X_c = E_c^{-1} E_m X_b \]