PHA Polymer Prototypes
Dr. Laura Morales

- Films for packaging applications
- Adhesives
Processing conditions are crucial.
- Temperature-DSC Melting
- Thermal Degradation temperature TGA

Blend Preparation
Temperature, Time, Speed, 40cc3
Mechanical properties evaluation

Hydraulic press

Bioplastic Technologies
Biodegradable Polymers
Mechanical properties evaluation

Hydraulic press
Mechanical properties evaluation

Hydraulic press

Modulus
Mechanical properties evaluation

Hydraulic press
Mechanical properties evaluation

- **Modulus**
- **Strength & Strain at break**
- **Toughness**

Hydraulic press
Biobased Polymer blends - PLA/PHB optimized blends

<table>
<thead>
<tr>
<th></th>
<th>Biobased content (%)</th>
<th>Petro based content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA+mclPHA</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Bioplastech1 (1432)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Bioplastech2 (1433)</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>Bioplastech3 (1434)</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>Bioplastech4 (1435)</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>Bioplastech5 (1436)</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>PLAPBAT©</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>PLAPBAT© (Bioflex)</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Bio based - 100-85%

Graph showing elastic modulus and ultimate tensile strength for different blends.
Scale up - Pellet preparation

Leistritz twin screw extruder - a ZSE 27 MAXX – 40 L/D Pelletizer

IPC-Ireland
Film Casting
PLA + mclPHA, Bioplastech R, and Bioplastech M

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Bioplastech mcl-PHA</th>
<th>Temp. (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>411 PLA</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>412 PLA-mclPHA</td>
<td>R</td>
<td>190</td>
</tr>
<tr>
<td>412 PLA-mclPHA</td>
<td>R</td>
<td>200</td>
</tr>
<tr>
<td>413 PLA-mclPHA</td>
<td>M</td>
<td>200</td>
</tr>
<tr>
<td>413 PLA-mclPHA</td>
<td>M</td>
<td>220</td>
</tr>
</tbody>
</table>
Bioplastech PHB Optimized blends

Bioplastech blends = 85% Biobased Commercial 18-32%
Adhesives

- Hot Melt Adhesives (HMA)
- Pressure sensitive adhesives (PSA)

- PHB
- Mcl-PHA

PHB, mcl-PHA formulations

Main Matrix for HMA & PSA

Commercial Samples

- Evaluation of properties (Peel Strength)
- Compare properties with commercial applications
- Complete characterization

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>Standard Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peel Strength</td>
<td>ASTM D3330</td>
</tr>
<tr>
<td></td>
<td>ISO 8510; ISO 11339</td>
</tr>
<tr>
<td>Open Time</td>
<td>ASTM D4497</td>
</tr>
<tr>
<td>Setting Time</td>
<td>ASTM D6463-99</td>
</tr>
<tr>
<td></td>
<td>ISO EN 15336;</td>
</tr>
<tr>
<td>Heat Resistance</td>
<td>ASTM D4498</td>
</tr>
<tr>
<td></td>
<td>ISO 19212</td>
</tr>
<tr>
<td>Thermal Stability</td>
<td>ASTM D4499</td>
</tr>
<tr>
<td></td>
<td>ISO 10363</td>
</tr>
</tbody>
</table>
Adhesives, PHB formulations HMA

Formulation Design
- Polymer
- Waxes
- Tackifiers (natural)
- Antioxidants
- Other Additives
 - Detackifiers
 - Plasticisers
 - Compatibilicers

Substrate
PET
HMA, mcl-PHA

<table>
<thead>
<tr>
<th>Sample</th>
<th>Polymer</th>
<th>Bio-based content</th>
<th>Peel Strength (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G46</td>
<td>M</td>
<td>97</td>
<td>8.45</td>
</tr>
<tr>
<td>G60</td>
<td>T12</td>
<td>100</td>
<td>6.54</td>
</tr>
<tr>
<td>G64</td>
<td>T12</td>
<td>80</td>
<td>8.44</td>
</tr>
</tbody>
</table>

Applications:
- Assemble disposable containers
- Boxes
- Paper – paper bags
- Paper-cellulose windows
- Paper-PLA windows

![Graph showing peel strength (N) for different samples](image)

Commercial adhesive:
- (SIS)
- (EVA)

Bioplastech T12

Applications:
- 100° - 120°C
PSA- mcl-PHA

- Solvent borne processing
 - Coating
 - Drying
 - Curing (chemically, radiation)

Labels – Cellulose based film coated
PSA- mcl-PHA Cold temperatures
HMA-PSA -- Hot melt coater
Thank you!